# NORWAY PLAINS ASSOCIATES, INC. <br> LAND SURVEYORS • SEPTIC SYSTEM DESIGNERS • CIVIL ENGINEERS 

P.O. Box 249

Continental Blvd. (03867)
Rochester, NH 03866-0249
Fax (603)332-0098
www.norwayplains.com
Phone (603) 335-3948 / (800) 479-3948

P. O. Box 268

31 Mooney St.
Alton, NH 03809
Phone \& Fax (603) 875-3948

April 2, 2020

Seth Creighton, Chief Planner
Department of Planning and Development
Second Floor, City Hall
31 Wakefield Street
Rochester, NH 03867-1917

## Re: Case \#110-10-R1-20, Proposed Subdivision; Technical Review Group Response.

Dear Seth:

The following is a summary of action taken to address the comments from the March 28, 2020 TRG letter for the proposed major subdivision for Golden Oaks Development, LLC located on Eastern Avenue. To expedite the review process; I have maintained the same order as the letter we received.

## DPW Comments:

## Stormwater

1. Since there is no rain garden at lot 10-15, it appears that stormwater may flow towards lot 10-14. Provide an explanation of what happens to stormwater in this area.

- The existing topography is such, that all of the runoff from this lot development will flow towards the roadside ditch line and ultimately end up in Infiltration Basin \#1. The proposed development was accounted for in the drainage analysis.

2. The emergency spillway is at the same elevation as the inlet of the outfall pipe at both infiltration basins, should the emergency spillway be higher that the outfall? Revise or provide explanation

- The elevations of the outlet structures were lowered by 0.25 feet such that stormwater would flow into the outlet structure before reaching the elevation of the emergency spillways. Even with the lower outlet rim elevations, the stormwater levels within both basins do not reach the elevation of the outlet structure. Thus, the net results do not change the stormwater rates or volumes from the initial report.

3. Add anti-seep collars to outfall pipes in both infiltration basins.

- The proposed pipe table has been revised to require anti-seep collars on these two pipes.
- The Infiltration Basin Profiles on sheet C-9 have been revised to depict the collars.
- A detail of the anti-seep collar has been added to Sheet C-8 of the plan set.

4. Are there any flow control orifices on the outlet control structure? Are they needed?

- The infiltration basins have been sized to retain all of the stormwater directed towards them and rely on infiltration into the ground. Thus, there are not flow control orifices on the outlet structures.

5. On sheet 3, complete the table for proposed drain pipes. Only 4 pipes are shown.

- The proposed pipes were listed for all of the other pipes within the Drainage Structure Tables. That being said, the were moved over into the Drainage Pipe table as requested.

6. On Sheet 3, drain pipe "H" appears to have little or no cover over the top of the 24 " pipe near the basin.

- The earthen maintenance path over the pipe was raised and the outlet end at the forebay was lowered to provide more cover.

7. On Sheet 3, drain pipe "M" appears to have little or no cover over the top of the 15 " from DMH \#1 to the basin.

- The elevation of the maintenance path was raised to provide more cover over the pipe.

8. Make the Basin \#1 access/maintenance path 10 ' wide the entire way. Provide detail to show all access paths to have 6 " crushed gravel travel surface.

- The maintenance path has been revised to 10 feet wide.
- A detail has been added to Sheet C-5 of the plan set. The detail calls for 6 " of Crushed Gravel over 9" of Bank-run Gravel.

9. Provide a construction detail for the drain manhole.

- A pre-cast Drain Manhole detail has been added Sheet C-8 of the plan set.

Water

1. Add a 5 ' high fiberglass marker to the hydrant detail per City standards.

- The hydrant detail has been revised to add the fiberglass marker per the detail located within the Standards for Infrastructure Design dated August 2018.
Sewer

1. The NHDES specifies a minimum pipe size of 3 " for low pressure systems with more than 11 service connections. Please revise drawings and details.

- Env-Wq 704.07(e); Table 704-3 states that for number of connections served by a pressure sewer pipe of between 11 and 30, the minimum pipe size, in inches, shall be 3 . However, it is our understanding that this is applicable to pressure sewer systems which contains sewage (solids). For this project, the system is designed for only pumping effluent from the homes, thus a smaller diameter pipe is allowable.
- This office has received NHDES approval for similar sized projects (Clark Road, Town of Wolfeboro) where the force main is 2 " in diameter.
- Given the limited total head for the proposed project, it would require very large pumps to maintain operational velocity of at least 2 feet per second in a 3 " pipe.
- Thus, the plans have not been revised to increase the pipe diameter to 3 ".

2. Provide design for pipe and pumps at maximum flow (all pumps on street pumping simultaneously).

- See the attached report for specifics about the low-pressure sewer system design.
- This report will be provided to the NHDES with the Sewer Discharge Permit application.

3. Provide a note for the HDPE pressure main that all pipe sections shall be joined by thermal heat fusion. Connections or transitions to non-HDPE components shall be made with fittings approved for HDPE connections. The welding technician shall be experienced in HDPE heat fusion welding with minimum of 500 hours of welding experience. The intent of this note is to make sure that the HDPE pipe is continuously welded in a professional manner and not pieced together with stainless steel clamps.

- A note has been added to the Force Main Sewer Pipe Trench Detail as requested.

4. Revise note \#11 on sheet C-7 (notes on right side of sheet).

- Note \#11 has been revised to correctly list "City of Rochester"

5. Add 3 " wyes to the force main to allow jet cleaning access.

- The wyes are still listed as 2". See aforementioned response \#1.

6. All sewer valves shall open right and box covers to stamped "Sewer".

- The Pump Discharge Line Connection detail has been revised as required.

General

1. Sheet C-5: on the paved sidewalk detail, revise the reference to NHDOT paving items, should be 403.11, not 304.11.

- This detail has been corrected.

2. Sheet C-5: revise the sidewalk details to match the City subdivision standards, section 6.2.4.4, for sidewalks and sidewalks crossing driveways (pavement and gravel thicknesses).

- This detail has been revised to match the City standards.

3. Revise the loam thickness to be 6 " in all City ROWs and easements.

- The Typical Roadway Cross Sections and Sidewalk Details have been revised to require 6 " of loam within the ROW.

4. Add a sign to the table on Sheet C-5 for contractor to construct. Sign shall be the typical private to be public subdivision sign. Refer to planning department for specifications.

- The Sign Schedule has been amended to include this sign.


## Assessing Dept. Comments:

1. This land is not in Current Use.

- No action required.

2. All of the previous parcel numbers that were assigned to this subdivision are still suitable. Our office will review the addresses that were assigned previously with the updated curb cut plan and make any revisions, if necessary.

- No Action Required.


## Planning Dept. Comments:

1) Please submit a street name application form.

- A street name application will be submitted, although we believe the applicant wishes to keep the proposed roadway name as "Freedom Drive".

2) Work with DPW to get the details for a standard street sign (street name). The sign must include a removable topper/cap that reads "Private". Add these details to the plan.

- A "Private" sign was added to the Sign Schedule on Sheet C-5.

3) Please move the drain line to the edge of Lot 6 , or entirely outside of Lot 6 so that there is more unobstructed land on that lot (nearly $1 / 2$ of this lot is proposed to be a drainage easement area, that's not something we will support, we will however support additional wetland buffer impacts to relocate this drain line).

- The drainage pipe was shifted easterly as much as possible to provide more "buildable area" on Lot 6 while still maintaining adequate slope in the pipe to drain to the stormwater management system.
- The land area on Lot 6 which is not incumbered by the drainage easement, wetlands and wetland buffers and building setback is more than 9,800 square feet. This exceeds the minimum land area for a parcel in R-1 zoning district ( $10,000 \mathrm{sf}$ ) once the building setbacks are applied.
- The wetland buffer impact did increase by about 1,000 square feet, but there is no direct impact to the wetlands.

4) The creation of a non-conforming lot (lot 110-0, "Open Space") is not permitted. Subdivision Regulation 5.2 states that lots are to adhere to Zoning Ordinance requirements and any remnants of lots below usable size are to be added to adjacent lots instead of remaining as unusable parcels. The City is not interested in being liable for six acres of unusable land, and this open space of this makeup (drainage and wetlands) are not valuable to the residents and would necessitate the need for a permanent HOA. Open space is also not required for this subdivision.
a) Please reconfigure lots accordingly.

- The overall subdivision was revised to eliminate the "Open Space" lot. As such Lots 10-5, through 10-8 were modified.
- Lot $10-5$ land area increased in land area.
- Lot 10-6 land area increased and is shaped to accommodate the stormwater management system on the lot.
- Lots $10-7$ \& $10-8$ were increased in the size of the lots.
b) Please add an easement for the water course (wetland between Lots 6 and 7), per Subdivision Regulation 5.7.2.
- Although the wetlands bisect the parent property, there is not a defined channel that would be classified as a water course. The proposed culvert under the roadway acts more as an
equalizer for the existing hydrology. Seasonal runoff generally flows in both directions from the proposed crossing. Thus, we do not believe an easement is warranted.
- Drainage easements have been added at the headwalls for the proposed culvert to allow maintenance of the culvert and headwalls.

5) Please address the following via the General Notes on Sheet S-1, and then add all General Notes to Sheet S-2:
a) Subdivision Regulation 5.7 and 6.1 requires pins/monuments be set at easement bounds, property corners, etc.... Please revise General Note 2 so that is states generally where pins/monuments are supposed to be set. And note that they need to be set before the road can be considered for City acceptance, and all lot pins and pins for easements on lots be set before a Certificate of Occupancy is issued for said lot. Also note that a letter from a NH Licensed Land Surveyor stating pins/monuments have been set must be submitted to the Planning Dept. on a lot by lot basis, and a Certificate of Occupancy (CO) will not be issued for the let requesting a CO without this letter; a similar letter is required before asking for street acceptance and/or close-out of project/surety.

- This note has been revised accordingly.
- All of the notes are on both S-1 and S-2 of the recording plans.
b) Add a note stating that structures and sewerage are not allowed in easement areas. (Subdivision Regulation 5.7.3).
- Note \#22 has been added to the plan set.
c) Add a note stating all utilities must be underground (Subdivision Regulation 5.12)
- Note \#20 has been added to the plan set.
d) Clarify General Note \# 5 so that it is clear the orange snow fence is to be placed at the wetland buffer.
- Note \#16 (previously General Note \#5) has been revised as requested.
e) Clarify General Note \#6 to state that the buffer markers are available for purchase from the Planning Dept.
- Note \#17 (previously General Note \#6) has been amended as requested.
f) Add a note stating that individual effluent pump systems will likely be required. These will be at the lot owner's expense and will be the lot owner's responsibility.
- Note \#21 has been added to the plan set.
g) Street trees are required per Subdivision Regulation 5.13. Please note that each lot is to have one street tree and call out minimum planting size, list advisable tree species. Note that tree is to be located on the front property line.
- Note \#24 has been added to the plan set, which requires a minimum of one street tree per lot to be planted on the property line. Furthermore, the note indicates the size and species of the tree to be planted (or preserved).
h) Add a note that a small informational sign is to be installed at the infiltration ponds; signs are simply to state that these are stormwater management areas and are not to be maintained but not altered. The purpose of this condition and sign is to make sure homeowners know these areas are off-limits.
- Note \#14 has been added to the plan set.

6) Please Show easement areas on Sheet S-1 and S-1. We want the recorded plans to clearly illustrate the restricted areas to anyone considering purchasing a lot.

- The proposed drainage easements are depicted on both S-1 and S-2, along with sheet S-3 which has the bearing and distances and area for the easements.

7) Propose a tree in the cul-de-sac, to the northern edge, so that when it matures it shades the road but is away from the drain line.

- A proposed shade tree has been added to the cul-de-sac.

8) Sheet $\mathrm{S}-2$ shows a match line at the top of the sheet, and the match line references Sheet $\mathrm{S}-1$. There is actually no sheet in the plan set that shows the other portion of this match line. Please correct.

- An insert has been added to sheet S-2 for the rest of proposed lot 10-8.

9) The road and drainage must be privately maintained unless the City accepts the street. Please create an Operations and Maintenance manual and draft HOA document outlining draft responsibilities for the road and drainage.

- We are working with the applicant on the draft HOA documents which will contain provisions for the operations and maintenance of the infrastructure, including the stormwater management systems, and the roadway.

10) Add a tree planting detail to the planet.

- A tree planting detail has been added to Sheet C-5.

11) Because the Registry of Deeds shows the old subdivision lots that were previously approved, yet failed to be built/vested, a lot consolidation application is needed. All of the lots will need to be consolidated into one lot first and recorded as such at the Registry of Deeds. Please submit Lot Consolidation application. This must be processed and recorded before the subdivision plan is recorded.

- A Lot Consolidation Form will be submitted once the subdivision has a conditional approval from the City and all State Permit have been approved.

12) Please work with your surveyor/legal counsel to add a note on the plans to be recorded that addresses roads and their dedication and acceptance with regards to abutting lots. What we are looking for is language that when will address our concern that if lots are conveyed without some language that excludes fee to the centerline than ownership/fee is to the centerline. We need language that guarantees the City will get ownership upon street acceptance, and not only get an easement / right-of-way.

- We will work with the applicant's legal counsel and Joel Runnals on the wording of the ROW.

13) These lots will be subject to Impact Fees.

- Note \#25 has been added to the recording plans with this requirement.

If you have any questions regarding the revisions made to this plan set, the design itself or any supplemental material submitted to satisfy the conditions of approval, please feel free to call or email me.

Sincerely,

## NORWAY PLAINS ASSOCIATES, INC.

By:


Scott A. Lawler, P.E., Project Engineer
Cc: Golden Oaks Development, LLC Arthur Taylor LLC

## PROPOSED 16 LOT SUBDIVISION <br> FREEDOM DRIVE <br> PREPARED FOR <br> GOLDEN OAKS DEVELOPMENT, LLC MARCH 2020



CIVIL ENGINEERS
NORWAY PLAINS ASSOCIATES, INC 2 CONTINENTAL BOULEVARD ROCHESTER, NEW HAMPSHIRE 03867 (603) 335-3948

DEVELOPER
GOLDEN OAKS DEVELOPMENT, LLC 35 JENKINS ROAD LEE, NH 03861

OWNER
ARTHUR TAYLOR, LLC. SAN JOSE, CA 95123




NORWAY PLAINS ASSOCIATES, INC. $\qquad$











LAND SURVEYORS

| LAN |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Nom | SIIN SIIE |  | text | (tais |
|  | Helght | WOTH |  |  |
| R1-1 | $30 "$ | 30" | (5TOP | 1 |
| R4-7b | $30 "$ | 24" | KEEP | 1 |
| W14-1 | $30 "$ | 30" | $\begin{aligned} & \text { DEAD } \\ & \text { END } \\ & \hline \end{aligned}$ | 1 |
|  | $\begin{aligned} & 4^{\prime \prime \prime} \\ & 9 \end{aligned}$ | $\begin{aligned} & 8^{\prime \prime} \\ & 24^{\prime \prime} \end{aligned}$ | FREEDOM DRVE | 1 |
|  | ${ }^{24}{ }^{4}$ | $48^{\prime \prime}$ |  | 1 |


SIGN SCHEDULE


2. $\frac{\text { TYPICAL TRAFFIC SIGN }}{\text { NOT TO SCALE }}$


MAINTENANCE PATH CROSS-SECTION NOT To SCALE


TIP-DOWN PROFILE


PLaN VIEW
CURB TIP-DOWN PLAN \& PROFILE DETAIL
not to SCale


NOT To Scale


PAVED SIDEWALK WITH GRANITE CURB DETAIL
Not to SCALE



$\frac{\text { ROADTAY CROSS-SECTION }}{1^{\prime \prime}=5^{\prime}}$


CUL-DE-SAC CROSS-SECTION



TYPICAL DRIVE IN CUT SECTION




TYPICAL DRIVE HEADWALL
ROADWAY DETAILS TAX MAP 110, LOT $10-00$ \&
LOTS $10-2$ THRU $10-18$ LOTS 10-2 THRU 10-18 FREEDOM DRIVE GOLDEN OREDKS LLC.





TOP VIEW


FRONT VIEW
$\frac{24 " \text { REXUS DI CB F \& GRATE } 62114 \text { CB3R }}{\text { NOT TO SCALE }}$


TOP VIEW


SIDE VIEW FRONT VIEW $\frac{\text { FLAIRED END SECTION DETAIL }}{\text { Not to SCALE }}$


## ELIMINATOR CATCH BASIN

OIL AND DEBRIS TRAP DETAIL


наматоя



REINFORCED CONCRETE SLAB COVER
NOT TO SCALE解

## $\frac{\text { ANTI-SEEP COLLAR DETAIL }}{\text { NOT TO SCALE }}$


$\frac{\text { TYPICAL DRIVE HEADWALL }}{\text { NOT TO SCALE }}$

Noss DRAINAGE PIPE
$\frac{\text { TRENCH INSTALLATION DETAIL }}{\text { NOT TO SCALE }}$


促


DRAINAGE DETAILS AX MAP 110, LOT $10-00$ \& LOTS 10-2, THRU 10-18 FREEDOM DRIVE
ROCHESTER, NH ROCHESTER, NH
 march zozo 2 Continental Blvd., Rochester, N.H. $603-335-3948$



EROSION CONTROL MIX BERM CROSS-SECTION


EROSION CONTROL MIX BERM CROSS-SECTION













EROSION CONTROL MIX
$\frac{\text { BERM DETAIL }}{\text { Not to SCALE }}$


FILTER SOCK CONNECTION PLAN VIEW


FILTER SOCK
CROSS-SECTION


HEAVY DUTY PYRAMID FILTER SOCK CROSS-SECTION



", MERENOMTINUOUS CONTAINED BERM

$$
\frac{\text { "FILTER SOCK" DETAIL }}{\text { Not To SCALE }}
$$



$$
\begin{aligned}
& \text { Noll }
\end{aligned}
$$

SEDIMENT FOREBAY


NFILTRATION BASIN \#1 \& \#2 OUTLET STANDPIPE DETAIL Not to SCALE


INFILTRATION BASIN \#1 \& \#2
SEDIMENT FOREBA
GAUGE DETAIL NOT TO SCALE


INFILTRATION BASIN DETAIL SHEET AND SILT SOCK AND EARTH BERM DETAIL

LOTS 10-2 THRU 10-18 FREEDOM DRIVE ROCHESTER, NH GOLDEN OREPAKOR: LLC




## 酉



$-5=5$








분․․․









以": wivituwam

THixawa










 Till 18 I2-2-2020)

Till 19 (2-2-2020)



# GOLDEN OAKS DEVELOPMENT, LLC RESIDENTIAL SUBDIVISION FREEDOM DRIVE SANITARY SEWER SYSTEM DESIGN 

PREPARED FOR:<br>GOLDEN OAKS DEVELOPMENT, LLC<br>FREEDOM DRIVE<br>ROCHESTER, NH

MARCH 2020

PREPARED BY:
NORWAY PLAINS ASSOCIATES, INC.

## TABLE OF CONTENTS

1.0 INTRODUCTION: ..... 1
2.0 EXISTING DEVELOPMENT: ..... 1
2.1 PROJECT LOCATION: ..... 1
2.2 MUNCIPAL SEWER SYSTEM: ..... 1
3.0 PROPOSED DEVELOPMENT ..... 1
3.1 PROPOSED DESIGN FLOWS: ..... 1
3.1.1 RESIDENTIAL FLOWS: ..... 2
3.1.2 INFILTRATION AND INFLOW: ..... 2
3.1.3 TOTAL AVERAGE DAILY FLOW: ..... 2
4.0 PUMP STATION DESIGN ..... 2
4.1 PUMP SELECTION ..... 2
5.0 CONSTRUCTION SPECIFICATIONS: ..... 3
TABLES
TABLE 1: PROPOSED AVERAGE DAILY SEWER DESIGN FLOWS SUMMARY: ..... 2
TABLE 2: PROPOSED PUMP SELECTION AND DATA SUMMARY: ..... 2
APPENDICES
SEWER DESIGN FLOW WORK SHEETS ..... A-1
SEWER PUMP STATION CALCULATION WORK SHEETS ..... A-2

- SEPTIC TANKS AND SEWER MANHOLE BOUYANCY WORK SHEETS ..... A-2.1
- SEWER PUMP MANUFACTURING SPECIFICATION SHEETS ..... A-2.2
SANITARY SYSTEM CONSTRUCTION SPECIFICATIONS ..... A-3
ADDITIONAL REFERENCES USED IN ANALYSIS AND DESIGN ..... A-4
- NHDES ENV-WQ 1000 ..... A-4.1
FIGURES
CITY OF ROCHESTER TAX MAP SKETCH ..... FIGURE 1
PLANS
COVER SHEET
ROADWAY PLAN AND PROFILE ..... C-1
UTILITY PLAN AND PROFILES ..... C-2
LOW PRESSURE SEWER \& SEPTIC TANK DETAILS ..... C-7

This report and supporting document have been prepared on behalf of Golden Oaks Development, LLC for the "PROPOSED 16 LOT SUBDIVISION".

The purpose of this design is to provide sanitary sewer connection for the proposed houses on a residential subdivision. The proposed sanitary connection will be the existing municipal sewer system located at Eastern Avenue.

### 2.0 EXISTING DEVELOPMENT:

### 2.1 PROJECT LOCATION:

The subdivision is located on the westerly side of Eastern Avenue. Please refer to Figure 1 (Rochester Tax Map Sketch) for a pictorial placement of the project area. The parcel is known as Tax Map 110, Lot 10, 10-2 through 10-18 on the Rochester Assessing maps. These parcels were created in 2007 as part of an eighteen-lot residential subdivision.

### 2.2 MUNCIPAL SEWER SYSTEM:

The sanitary sewer for the original subdivision was designed utilizing a traditional gravity collection system which drained towards the rear of the property to a large suction-lift pump station. A four-inch force main carried the sanitary waste back up towards Eastern Avenue to a point where gravity would allow for connection to the municipal sewer system within the Eastern Avenue right-of-way. This phase was approved by NHDES Wastewater Engineering Bureau on July 12, 2007, Permit Number D2007-8. However, due to economic downturn that occur shortly after the project was approved, only one of the lots was sold and built upon.

Prior to the project dying, the developer constructed a short section of the gravity sewer system, approximately 118 linear feet with the connection to the municipal sewer line and installed one sewer manhole. The single house developed ties into the section of gravity sewer

### 3.0 PROPOSED DEVELOPMENT

The 16-lot residential subdivision is proposed in the general location as the previously approved subdivision. The proposed road will provide access to 16 single-family lots, mostly 3-bedroom homes. Within the Right-of-way, a municipal sewer system will be constructed. This system will consist of a 900 linear feet of low-pressure force mains will be 2" SDR21 HDPE which ties into the aforementioned sewer manhole constructed at the entrance of the project.

The proposed low-pressure force mains were designed for effluent only. Therefore, each house lot will have a 2compartment septic tank with pump chamber. Additionally, each lot will have independent effluent pump with alarms. Sewer shut-off gave valves will be installed at the road ROW, to allow the City to shutoff a lot for maintenance similar to a water curb-stop.

### 3.1 PROPOSED DESIGN FLOWS:

The average daily designs flows must be determined to design the sewer collection system and sewage pump stations. Please refer to Appendix A-1 for the design worksheet.


### 3.1.1 RESIDENTIAL FLOWS:

The proposed sewer design is based on Residential Dwelling that have an average of 3-bedrooms. The design flow rate is in accordance with the table 1008 -1 of Env-Wq. 1008.03 is 300 gpd for a 2-bedroom dwelling and 150 gpd for every bedroom more than 2 . Therefore, the total design flow of 450 gpd was used for each lot.

TABLE 1: PROPOSED AVERAGE DAILY SEWER DESIGN FLOWS SUMMARY:

| Dwelling Units | Number of <br> Units | Average <br> (gaily Design Rate | Total Daily Design Flows (gpd) |
| :---: | :---: | :---: | :---: |
| 3-Bedroom Homes | 16 | 450 gpd | $7,200 \mathrm{gpd}$ |

### 3.1.2 INFILTRATION AND INFLOW:

Design of any new sewer system requires the allowance for infiltration and inflow. NHDES derives this allowance using a rate of 300 gpd per inch of pipe per mile per day. There is 118 linear feet of 8 " SDR35 HDPE sewer pipes associated with the proposed on-site collection system. Additionally, there will be about 160 linear feet of 4" SDR35 HDPE pipe from the houses to the septic tanks. As such, the I \& I is calculated at a daily rate of 90 gpd.

### 3.1.3 TOTAL AVERAGE DAILY FLOW:

The total average daily design flow is the combination of the residential flows and the infiltration and inflow daily rates. As a result, the total design flow from this project is $7,290 \mathrm{gpd}$.

### 4.0 PUMP STATION DESIGN

Each lot will have a two compartment 1,250-gallon septic tank with a 500-gallon pump chamber installed adjacent to the house. Each lot will have an effluent pump, $1 / 3 \mathrm{hp}$ with a $11 / 2$ " SDR21 HDPE force main outlet pipe. Within the road right-of-way, there will be a 2" SDR21 HDPE force main that discharges to the sewer manhole located at the higher elevations.

### 4.1 PUMP SELECTION

The pumps were designed depending on the anticipated total dynamic head (static head and friction losses) to ensure minimum velocities within the force main. Please see the pump selection worksheets in Appendix A-2.1 for the house lots. As such, the following table provide the pump selection:

TABLE 2: PROPOSED PUMP SELECTION AND DATA SUMMARY:

| Lot Number | Pump Selection | Design Flow Rate <br> $(\mathrm{gpm})$ | Velocity <br> $(\mathrm{ft} / \mathrm{sec})$. | Pump Run Time <br> (min.) |
| :---: | :---: | :---: | :---: | :--- |
| $110-10-2$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |
| $110-10-3$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |
| $110-10-4$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |
| $110-10-5$ | Pentair SSM 33I | 27 | 2.5 | 4.4 |
| $110-10-6$ | Pentair SSM 33I | 25 | 2.3 | 4.8 |
| $110-10-7$ | Pentair ME 3F | 27 | 2.5 | 4.4 |
| $110-10-8$ | Pentair ME 3F | 30 | 2.7 | 4.0 |
| $110-10-9$ | Pentair ME 3F | 30 | 2.7 | 4.0 |
| $110-10-10$ | Pentair ME 3F | 30 | 2.7 | 4.0 |


| $110-10-11$ | Pentair ME 3F | 27 | 2.5 | 4.4 |
| :---: | :---: | :---: | :---: | :---: |
| $110-10-12$ | Pentair SSM 33I | 25 | 2.3 | 4.8 |
| $110-10-13$ | Pentair SSM 33I | 27 | 2.5 | 4.4 |
| $110-10-14$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |
| $110-10-15$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |
| $110-10-16$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |
| $110-10-17$ | Pentair SSM 33I | 30 | 2.7 | 4.0 |

Please see the manufacturing specification sheets in Appendix A-2.2.

### 5.0 CONSTRUCTION SPECIFICATIONS:

Included in Appendix A-3, is a set of construction specifications for the proposed sanitary sewer system. These specifications were developed in accordance with State of New Hampshire and City of Rochester requirements.

## APPENDICES

SEWER DESIGN FLOW WORK SHEETS ..... A-1
SEWER PUMP STATION CALCULATION WORK SHEETS ..... A-2

- SEPTIC TANKS AND SEWER MANHOLE BOUYANCY WORK SHEETS ..... A-2.1
- SEWER PUMP MANUFACTURING SPECIFICATION SHEETS ..... A-2.2
SANITARY SYSTEM CONSTRUCTION SPECIFICATIONS ..... A-3
ADDITIONAL REFERENCES USED IN ANALYSIS AND DESIGN ..... A-4
- NHDES ENV-WQ 1000 ..... A-4.1


## PLANS

COVER SHEET .ROADWAY PLAN AND PROFILE-UTILITY PLAN AND PROFILES ..... C-2
LOW PRESSURE SEWER \& SEPTIC TANK DETAILS ..... C-7

## APPENDIX A-1:

 SEWER DESIGN FLOW WORK SHEETNHDES, Water Division: Sewer Design Flow
Given Information: *Refer to NHDES Rules Env-Wq 700

| Avg. Daily Flow (ADF) = | $\begin{aligned} & 300 \\ & 150 \end{aligned}$ | gpd for 2-bedroom Dwelling's gpd/bedroom for more than 2 | $\begin{aligned} & \hline \text { Env-Wq } 1008.03 \\ & \hline \text { Env-Wq } 1008.03 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | 450 |  |  |
| Peaking Factor $=$ | 6 |  | Env-Wq 706.03(d) |
| Infiltration Rate $=$ | 300 | gal./inch dia./mile/day | Env-Wq 706.03(f) |
| Number of 3 Bedroom Dwelling's = | 16 | Gallons Per Day= | 7200 gpd |
| Total Length of $=$ of Gravity Sewer | 118 | ft. Diameter of = Gravity Sewer | 8 inch |
| Total Length of $=$ of Sewer Services | 160 | ft. <br> Diameter of = Sewer Services | 4 inch |
| Total Length of $=$ of Force Main | 900 | ft. <br> Diameter of $=$ <br> Force Main | 2 inch |

*Information in Red is user input
Assumes all proposed lots are 3-bedroom Dwellings
Assumes all house services are 20 feet from house to tank
Daily Flow:

Daily Flow = ADF x number of units

> Daily Flow = 7,200 gpd

## Infiltration:

Infiltration $=$ Infiltration Rate $\times$ (Total Length of Gravity Sewer + Sewer Services)
Infiltration = $90 \quad$ gpd

## Total Daily Flow:

Total Daily Flow = Daily Flow + Infiltration
Total Daily Flow $=7,290$ gpd

Peak Flow:

| Peak Flow $=$ Total Daily Flow $\times$ Peaking Factor |  |  |  |
| :--- | :--- | :--- | :--- |
| Peak Hourly Flow = Peak Flow $/ 24 \mathrm{hr} / 60 \mathrm{~min} / \mathrm{hr}$. | Peak Flow $=\mathbf{4 3 , 7 4 0}$ | gal. |  |
|  |  |  |  |

## APPENDIX A-2:

SEWER PUMP STATION CALCULATION WORK SHEET

## Buoyancy Calculator for Small Structures:

Essentially, buoyancy is the calculated by subtracting the weight of water displaced by a structure from the weight of the structure itself. If the weight of water displaced is larger that the weight of the structure; the structure is "buoyant". In large structures like deep foundations and pile foundations friction force also becomes important to consider. For small structures friction is negligible and is not accounted for in the following calculation. This actually makes the following results conservative.

## Structure Dimensions and Given Information: 2-compartment Septic Tanks

Round Structure:

$$
\text { Inside dia. }(D)=\quad 0 \quad \text { inches }
$$

## Rectangular Structure:

Outside width $(B)=84$ inches
Outside Length $(L)=120$ inches

## Thickness \& Height:

Wall thickness $(T w)=4$ inches
Bottom thickness $(\mathrm{Tb})=4$ inches*
Top thickness $(T t)=4$ inches
Height of Struct. $(\mathrm{h})=5.66$ feet $\quad$ Thickness \& Height:
Depth of Ballast $(\mathrm{hb})=0 \quad$ feet
Depth of Soil $(\mathrm{hs})=6.66$ feet
Depth of Water $(h w)=4.66$ feet

## Densities:

Structure Material: Concrete
density structure $(\rho($ struct $))=\frac{150 \mathrm{pcf}}{}$

Ballast if any and type: sewer water
density of ballast $(\rho($ bal $))=62.4$ pcf
density of soil $(\rho($ soil $))=125$ pcf
density of water $(\rho($ water $))=62.4 \quad$ pcf density of concrete $(\rho($ conc $))=150 \quad$ pcf

Footing Dia. $(\mathrm{Bf})=0$ inches
Footing thickness $(T f)=0 \quad$ inches


Chamber Bot. = 255.67
Bottom El. $=255.34$
Ftg. Bottom $=255.34$

## Equations:

Aout = Outside area of Structure
Ain = Inside area of Structure
Afoot $=$ Area of Footing $=(\mathrm{pi})(\mathrm{Bf} / 2)^{\wedge} 2$ (round) or
Vstruct $=$ Volume of Structure Material $=\{($ Aout - Ain $) \times(\mathrm{h}-\mathrm{Tt}-\mathrm{Tb})\}+($ Aout $\times(\mathrm{Tt}+\mathrm{Tb})$
Vbal $=$ Volume of Ballast Material $=($ Ain $\times$ hb $)$
Vdisp $=$ Volume of displaced water $=$ Aout $\times$ hw + Vfoot
Vfoot $=$ Volume of footing $=$ Afoot $\times \mathrm{Tf}$
Vsoil $=$ Volume of Soil on Footing $=($ Afoot - Aout $) \times$ hs
Vfill $=$ Volume of Soil on Tank $=($ Afout $) \times(h s-h)$
$\begin{aligned} \text { Wstruct } & =\rho(\text { struct }) \times \text { Vstruct } & \text { Wfoot }=\rho(\text { conc }) \times \text { Vfoot } \\ \text { Wbal } & =\rho(\text { bal }) \times \text { Vbal } & \text { Wsoil }=\rho(\text { soil }) \times \text { Vsoil } \\ \text { Wwater } & =\rho(\text { water }) \times \text { Vdisp } & \text { Wfill }=\rho(\text { soil }) \times \text { Vsoiltank }\end{aligned}$

$$
\begin{aligned}
& \text { Wstruct }+ \text { Wbal }+ \text { Wfoot }+ \text { Wsoil }+ \text { Wfill } \geq \text { Wwater } \quad \text { Structure is not Buoyant } \\
& \text { Wstruct }+ \text { Wbal }+ \text { Wfoot }+ \text { Wsoil }+ \text { Wfill }<\text { Wwater } \quad \text { Structure is Buoyant }
\end{aligned}
$$

## Calculations:

| $\begin{array}{r} \text { Aout }= \\ \text { Ain }= \\ \text { Afoot }= \end{array}$ |  | sq.ft. <br> sq.ft. <br> sq.ft. |  | Vstruct $=$ Vbal $=$ Vdisp $=$ Vfoot $=$ Vsoil $=$ VsoilTank $=$ | 101.04 0.00 326.20 0.00 0.00 70.00 | cu.ft. cu.ft. cu.ft. cu.ft. cu.ft. cu.ft. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wstruct = <br> Wbal = <br> Wwater = | 15156 20355 | lbs. <br> lbs. <br> lbs. |  | Wfoot = <br> Wsoil = <br> Wfill = | $\begin{gathered} 0 \\ 0 \\ 8750 \end{gathered}$ | lbs. <br> lbs. <br> lbs. |
| Wstruct+Wbal+ | foot+W | oil+Wfiil = | 23906 | < 20355 | = Wwater | Structure is NOT buoyant |



## T <br> HE MYERS SSM33I IS A RUGGED, HEAVY DUTY CAST IRON $1 / 3$ HP SUBMERSIBLE PUMP DESIGNED FOR

 DEMANDING DRAINAGE JOBS. The SSM33I's recessed, vortex impeller provides a clear, unobstructed passage in the volute case for superior solids handling. Its $1 / 2$ " solids handling capability allows it to be used in a wide variety of drainage and effluent pumping applications. Heavy duty cast iron construction ensures that the SSM33I will perform for years to come in most installations. Contact your Myers distributor, or the Myers Ohio sales office at 419/289-1144 for more details.
## ADVANTAGES BY DESIGN

DURABLE MOTOR WILL DELIVER MANY YEARS OF RELIABLE SERVICE.

- Oil-filled motor for maximum heat dissipation and continuous bearing lubrication.
- Shaded pole motor eliminates starting switches.
- Recessed vortex impeller provides free flowthrough passage for solids and liquid with minimal radial loading for long bearing life.


## THE SSM33I IS ENGINEERED FOR MANY YEARS OF MAINTENANCE-FREE OPERATION.

- Automatic models available with piggy-back float or vertical switch. (Both mercury free)
- Pump can be operated manually by unplugging piggy-back switch and plugging pump directly into outlet (Automatic models).
- Heavy cast iron motor housing and volute case dissipate heat, allow motor to run cooler for extended life and resist corrosion.


## PRODUCT CAPABILITIES

| Capacities To | 31 gpm | 117 lpm |
| :---: | :---: | :---: |
| Heads To | 23 ft . | 7 m |
| Pump Down Range Float Switch Vertical Switch | $\begin{aligned} & 7 \text { to } 10 \mathrm{in}, \\ & 4-1 / 8^{\prime \prime} \end{aligned}$ | $\begin{gathered} 178 \text { to } 254 \mathrm{~mm} \\ 107 \mathrm{~mm} \end{gathered}$ |
| Solids Handling Capacity | 1/2 in. | 12.8 mm |
| Liquids Handling | fresh drain water, effluent |  |
| Intermittent Liquid Temp. | up to $140^{\circ} \mathrm{F}$ | up to $60^{\circ} \mathrm{C}$ |
| Motor | 1/3 HP shaded pole1550 RPM |  |
| Electrical | $\begin{gathered} 115 \mathrm{~V}, 9.0 \mathrm{amps} \\ 10,60 \mathrm{~Hz} . \end{gathered}$ |  |
| Acceptable pH Range | 5-9 |  |
| Discharge, NPT | 1-1/2 in. | 38.1 mm |
| Minimum Sump Diameter | 12 in . | 305 mm |


| Construction Materials |  |
| :--- | :--- |
| Motor Housing, Volute Case | cast iron, Class 30, ASTM A48 |
| Pump Base | cast iron, Class 30, ASTM A48 |
| Impeller | recessed, thermoplastic |
| Power Cord | 10 or 20 ft.. <br> 16/3 SJTW/SJTW-A |
| Mechanical Seal | carbon and ceramic |




ME3F


T
HE MYERS ME3 SERIES ARE RUGGED $1 / 3$ HP EFFLUENT PUMPS DESIGNED FOR DEMANDING EFFLUENT PUMPING JOBS WHERE DEPENDABILITY IS A MUST. The ME3 is constructed of only the highest quality corrosion resistant materials - like cast iron, stainless steel and engineered thermoplastics - to provide many years of service in the harsh effluent environment. The ME3 is available with a recessed impeller for high-head applications or an enclosed impeller for high-flow applications - both will pass a full $3 / 4^{\prime \prime}$ spherical solid. The ME3 is available in automatic models with piggy-back mechanical float switch or manual models ior use with external controls. For more information, call your Myers distributor today or the Myers Ashland. Ohio sales office ai 419/289-1144.

## ADVANTAGES BY DESIGN

DURABLE MOTOR WILL DELIVER MANY YEARS OF RELIABLE SERVICE.

- Oil-filled motor for maximum heat dissipation and continuous bearing lubrication.
- Overload protected, shaded pole motor eliminates starting switches and relays which are prone to fail.
- Heavy cast iron moior housing and volute case dissipate heat, allow motor to run cooler for extended life.
THE ME3 IS ENGINEERED FOR MANY YEARS OF MAINTENANCE-FREE OPERATION.
- Field tested, wide angle, mercury-free mechanical float switch for maximum draw down. (Automatic piggy-back models only).
- Automatic pump models can be operated manually by unplugging piggy-back switch and plugging pump directly into outlet.
- Passes a full $3 / 4^{\prime \prime}$ solid.


## PRODUCT CAPABILITIES

| Capacities To $\begin{aligned} & \text { ME3H } \\ & \text { ME3F }\end{aligned}$ | 36 gpm 66 gpm | 136 lpm 250 lpm |
| :---: | :---: | :---: |
| Hecrds To ME3H | $\begin{aligned} & 36 \mathrm{ft} . \\ & 32 \mathrm{it} . \end{aligned}$ | $\begin{aligned} & 11.0 \mathrm{~m} \\ & 9.75 \mathrm{~m} \end{aligned}$ |
| Max. Spherlcal Solids | $3 / 4 \mathrm{in}$. | 19 mm |
| Liquids Handing | domestic eftluent and drain water |  |
| Intermitient Liquid Temp. | up to 140 F | up to $60^{\circ} \mathrm{C}$ |
| Motor Electrical Data | $1 / 3 \mathrm{hp}, 1550 \mathrm{rpm}$ shaded pole, oil-flled 115 volts. 11.5 amps , I ph 60 hz 230 volts, $5.8 \mathrm{cmps}, 1 \mathrm{ph} .60 \mathrm{hz}$ |  |
| Third Party Approvals | UL, CSA |  |
| Acceptable pH Range | 5.9 |  |
| Specific Grcrily | 9.1.1 |  |
| Viscosity | $28 \cdot 35 \mathrm{SSU}$ |  |
| Discharge. NPT | 1-1/2 in. | 50.8 mm |
| Min Sump Dia. Simplex Duplex | $\begin{aligned} & 24 \mathrm{in} . \\ & 36 \mathrm{in} . \end{aligned}$ | 60.1 cm <br> 91.4 cm |


| Construction Materials |  |
| :---: | :---: |
| Motor Housing | cast iron. Class 30. ASTM A48 |
| Impeller | engineered thermoplastic |
| Impeller Type ME3H ME3F | recessed enclosed |
| Impeller Wear Ring (ME3F only) | 304 SST |
| Volute | cast iron, Class 30, ASTM A48 |
| Volute Soaling Ring (MEXF only) | Buna-N |
| Power Corci | 10 or 20 ft. 1613 SJTW/SJTW-A |
| Mechanical Shafl Seal | carbon and ceramic |
| Fasteners | 300 Series 55T |

WHERE INNOVATION MEETS TRADITION

# ME3 SERIES 

High Head (ME3H) and High Flow (ME3F)
Submersible Effluent Pumps


## PERFORMANCE CURVE



Operates out of volute
passage, ailowing maximum
tow of liguds and solicts up to
3/4" diameter.

## MECHANICAL SHAFT

SEAL
carbonand ceramo
laces. Body is
stationary prevents
string or trash trom
winding on seal.

F. E. Myers, 1101 Myers Parkway, Ashland, Ohio 44805-1969 419/289-1144, FAX: 419/289-6658, www.femyers.com Myers (Canada), 269 Trillium Drive, Kitchener, Ontario N2G 4W5 519/748-5470, FAX: 519/748-2553

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure Emaen Pup

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure Ent

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump

File No. 166, Job No. 19138

Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure Ementur


File No. 166, Job No. 19138
Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Pump Design: Tax Map 110 - Lots 4 \& 14
Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Pump Design: Tax Map 110 - Lots 4 \& 14

| Pump Design: | Tax Map 110 - Lots 4 \& 14 |  |
| :---: | :---: | :---: |
| Destination Invert: Existing SMH at Station 1+35 |  |  |
|  | inv in. | 258.50 |
| Design Flow: | 450 | GPD |
| Pipe 1: SDR 21 | 1.5 | in. dia. |
| Pipe 2: SDR 21 | 2 | in. dia. |
| Dosing Calculations: |  |  |
| Desired Dose Ht. in |  |  |
| Pump Chamber $=$ | 1.00 | ft . |
| No. of doses/day = | 4 |  |
| Volume of dose $=$ | 120 | Gallons |

Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Pump Design: Tax Map 110 - Lots 4 \& 14

Static Head Calc's:
Static Head $=$ Destination Invert - Pump Off (or Force Main Elevation)
Pump Off $=\quad 256.80$
Force Main Elevation $=\quad 257.00$
Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure Enluent

$$
\text { File No. 166, Job No. } 19138
$$

## Norway Plains Associates, Inc. <br> P.O. Box 249 <br> Rochester, NH 03866-0249 <br> Friction Losses:


${ }_{(=\text {Pipe Lenth }}^{\frac{\text { Total Pipe Length: }}{\text { Length }+ \text { Joint Pipe Head })}}$

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure Enlont

$$
\text { File No. 166, Job No. } 19138
$$

## Norway Plains Associates, Inc. <br> P.O. Box 249 <br> Rochester, NH 03866-0249 <br> Friction Losses:


(=Pipe Letal Pipe Length:
Length + Joint Pipe Head)



Septic Pump Sizer - Freedom Drive.xlsx
Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure En

$$
\text { File No. 166, Job No. } 19138
$$

## Norway Plains Associates, Inc. <br> P.O. Box 249 <br> Rochester, NH 03866-0249 <br> Friction Losses:





(=Pipe $\frac{\text { Total Pipe Length: }}{\text { Length + Joint Pipe Head) }}$
(=Pipe $\frac{\text { Total Pipe Length: }}{\text { Length + Joint Pipe Head) }}$
Pipe 1 Head Calculations For Joints Etc.:
Pipe Length =


Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump -Low Pressure Enlunt

$$
\text { File No. 166, Job No. } 19138
$$

## Norway Plains Associates, Inc. <br> P.O. Box 249 <br> Rochester, NH 03866-0249 <br> Friction Losses:



Total Pipe Length:
(=Pipe Length + Joint Pipe Head)


Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump

File No. 166, Job No. 19138
Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Pump Design: Tax Map 110 - Lots 8 \& 10
Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Pump Design: Tax Map 110 - Lots 8 \& 10

| Pump Design: | Tax Map 110 - Lots 8 \& 10 |  |
| :---: | :---: | :---: |
| Destination Invert: Existing SMH at Station 1+35 |  |  |
|  | inv in | 258.50 |
| Design Flow: | 450 | GPD |
| Pipe 1: SDR 21 | 1.5 | in. dia. |
| Pipe 2: SDR 21 | 2 | in. dia. |
| Dosing Calculations: |  |  |
| Desired Dose Ht. in |  |  |
| No. of doses/day = | 4 |  |
| Volume of dose $=$ | 120 | Gallons |

Norway Plains Associates, Inc.
P.O. Box 249
Rochester, NH 03866-0249
Pump Design: Tax Map 110 - Lots 8 \& 10



| Pump Off $=$ | 256.80 |
| :---: | :--- |
| Main Elevation $=$ | 250.50 |
| 258.50 |  |
| 250.50 | Destination Invert |
| 8.00 | fower of Pump Off or Force Main Elevation |
|  |  |
| Static Head $=$ | 8.00 ft. |

Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump Low Pressure Efluent

$$
\text { File No. 166, Job No. } 19138
$$

## Norway Plains Associates, Inc. <br> P.O. Box 249 <br> Rochester, NH 03866-0249 <br> Friction Losses:



Total Pipe Length:
(=Pipe Length + Joint Pipe Head)


Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump


Prepared for:
Golden Oaks Development, LLC
Low Pressure Effluent Pump - Low Pressure

$$
\text { File No. 166, Job No. } 19138
$$

## Norway Plains Associates, Inc. <br> P.O. Box 249 <br> Rochester, NH 03866-0249 <br> Friction Losses:


(=Pipe Length Pipe Length: Joint Pipe Head)


APPENDIX A-3:
SANITARY SYSTEM CONSTRUCTION SPECIFICATIONS

## SECTION 221313 <br> FACILITY SANITARY SEWERS

## PART 1 - GENERAL

### 1.1 SUMMARY

A. Section Includes:

1. Pipe and fittings.
2. Nonpressure and pressure couplings.
3. Expansion joints.
4. Cleanouts.
5. Encasement for piping.
6. Manholes.

### 1.2 ACTION SUBMITTALS

A. Product Data: For expansion joints.
B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.
1.3 INFORMATIONAL SUBMITTALS
A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from sewer system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.
C. Field quality-control reports.

### 1.4 NOTIFICATIONS

A. The Contractor shall contact the City of Rochester Public Works Department prior to the start of any sanitary sewer service installation.

## PART 2 - PRODUCTS

### 2.1 PVC PIPE AND FITTINGS

A. PVC Type PSM Sewer Piping:

1. Pipe: ASTM D 3034, SDR 35, PVC Type PSM sewer pipe with bell-and-spigot ends for gasketed joints.
2. Fittings: ASTM D 3034, PVC with bell ends.
3. Gaskets: ASTM F 477, elastomeric seals.
B. H.D.P.E. (High-Performance High-Density Polyethylene) Pipe.
4. H.D.P.E. used for the force main shall conform to ASTM D-2241 and D-1784 (class 1254-B). A safety factor of 2.5 shall be used for pressure rating determination with a standard dimension ratio (SDR) no higher than 11.
5. All H.D.P.E pipe and fittings shall conform to the most recent requirements of ASTM Specifications. ASTM D2683 (socket fused) ASTM D3261 (butt fused).

### 2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
B. Sleeve Materials:

1. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.
C. Unshielded, Flexible Couplings:
3. Description: Elastomeric sleeve with stainless-steel shear ring and corrosion-resistant-metal tension band and tightening mechanism on each end.
D. Ring-Type, Flexible Couplings: Elastomeric compression seal with dimensions to fit inside bell of larger pipe and for spigot of smaller pipe to fit inside ring.

### 2.3 CLEANOUTS

A. Cast-Iron Cleanouts: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.

1. Top-Loading Classification(s): Heavy Duty.
2. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.

### 2.4 ENCASEMENT FOR PIPING

A. Standard: ASTM A 674 or AWWA C105.
B. Material: high-density, cross-laminated polyethylene film of 0.004 -inch minimum thickness.
C. Form: [Sheet] [or] [tube].
D. Color: [Black] [or] [natural].

### 2.5 MANHOLES

A. Standard Precast Concrete Manholes:

1. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
2. Diameter: 60 inches minimum unless otherwise indicated.
3. Ballast: Increase thickness of precast concrete sections or add concrete to base section, as required to prevent flotation.
4. Base Section: 6-inch minimum thickness for floor slab and 4 -inch ( $100-\mathrm{mm}$ ) minimum thickness for walls and base riser section; with separate base slab or base section with integral floor.
5. Riser Sections: 4-inch minimum thickness, of length to provide depth indicated.
6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated; with top of cone of size that matches grade rings.
7. Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.
8. Resilient Pipe Connectors: ASTM C 923 (ASTM C 923M), cast or fitted into manhole walls, for each pipe connection.
9. Adjusting Rings: Interlocking HDPE rings, with level or sloped edge in thickness and diameter matching manhole frame and cover, and with height as required adjusting manhole frame and covering to indicated elevation and slope. Include sealant recommended by ring manufacturer.
10. Grade Rings: Reinforced-concrete rings, 6- to 9 -inch total thickness, with diameter matching manhole frame and cover, and with height as required to adjust manhole frame and cover to indicated elevation and slope.
11. Brick: Frame and Cover may be adjusted to grade using (a) course(s) of brick and mortar not to exceed 6-inches in thickness.
B. Manhole Frames and Covers:
12. Description: Ferrous; 30-inch ID by 7- to 9 -inch riser, with 4 -inch- minimum-width flange and 32 -inch diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "SEWER." PAMREX 30-inch diameter frame and cover. EJ Prescott Product \#62113-32-S.
13. Material: ASTM A 536, Grade 60-40-18 ductile [ASTM A 48/A 48M, Class 35 gray iron unless otherwise indicated.

### 2.6 CONCRETE

A. General: Cast-in-place concrete complying with ACI 318, ACI 350/350R (ACI 350M/350RM), and the following:

1. Cement: ASTM C 150, Type II.
2. Fine Aggregate: ASTM C 33, sand.
3. Coarse Aggregate: ASTM C 33, crushed gravel.
4. Water: Potable.
B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
5. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
6. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 deformed steel.
C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
7. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
a. Invert Slope: 2 percent through manhole.
8. Benches: Concrete, sloped to drain into channel.
a. Slope: 8 percent.
D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
9. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
10. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 deformed steel.

## PART 3 - EXECUTION

### 3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Section 312000 "Earth Moving."

### 3.2 PIPING INSTALLATION

A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
E. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of micro tunneling.
F. Install gravity-flow, nonpressure, drainage piping according to the following:

1. Install piping pitched down in direction of flow, at minimum slope of $0.004 \mathrm{ft} / \mathrm{ft}$ unless otherwise indicated.
2. Install piping NPS 6 and larger with restrained joints at tee fittings and at changes in direction. Use corrosion-resistant rods, pipe or fitting manufacturer's proprietary restraint system, or cast-in-place-concrete supports or anchors.
3. Install piping with $\mathbf{6 0}$-inch minimum cover.
4. Install PVC corrugated sewer piping according to ASTM D 2321 and ASTM F 1668.
5. Install PVC Type PSM sewer piping according to ASTM D 2321 and ASTM F 1668.
G. Install corrosion-protection piping encasement over the following underground metal piping according to ASTM A 674 or AWWA C105:
6. Expansion joints.
H. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

### 3.3 PIPE JOINT CONSTRUCTION

A. Join gravity-flow, nonpressure, drainage piping according to the following:

1. Join PVC Type PSM sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
2. Join dissimilar pipe materials with nonpressure-type, rigid couplings.
B. Pipe couplings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
3. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.
a. Unshielded flexible couplings for pipes of same or slightly different OD.
b. Unshielded, increaser/reducer-pattern, flexible couplings for pipes with different OD.
c. Ring-type flexible couplings for piping of different sizes where annular space between smaller piping's OD and larger piping's ID permits installation.

### 3.4 MANHOLE INSTALLATION

A. General: Install manholes complete with appurtenances and accessories indicated.
B. Pre-cast and poured-in-place bases shall be placed on a 6 " layer of compacted bedding material as described. The excavations shall be properly dewatered while placing bedding material and setting the base.
C. Inlet and outlet stubs shall be connected into manholes and sealed in accordance with an approved pipe to manhole joint as shown on the Standard Details.
D. Install precast concrete manhole sections with sealants according to ASTM C 891.
E. Install FRP manholes according to manufacturer's written instructions.
F. Form continuous concrete channels and benches between inlets and outlet.
G. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
H. Install manhole-cover inserts in frame and immediately below cover.

### 3.5 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

### 3.6 CLEANOUT INSTALLATION

A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use cast-iron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.

1. Use Light-Duty, top-loading classification cleanouts in earth or unpaved foottraffic areas.
2. Use Medium-Duty, top-loading classification cleanouts in paved foot-traffic] areas.
3. Use Heavy-Duty, top-loading classification cleanouts in vehicle-traffic service areas.
4. Use Extra-Heavy-Duty, top-loading classification cleanouts in roads.
B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

### 3.7 CONNECTIONS

A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains specified in Section 221316 "Sanitary Waste and Vent Piping."
B. Make connections to existing piping and underground manholes.

1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6 -inch overlap with not less than 6 inches of concrete with 28 -day compressive strength of 3000 psi.
2. Make branch connections from side into existing piping, NPS 4 to NPS 20 (DN 100 to DN 500). Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28 -day compressive strength of 3000 psi.
3. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

### 3.8 IDENTIFICATION

A. Materials and their installation are specified in Section 312000 "Earth Moving." Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.

1. Use warning tape or detectable warning tape over ferrous piping.
2. Use detectable warning tape over nonferrous piping and over edges of underground manholes.

### 3.9 FIELD QUALITY CONTROL

A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.

1. Submit separate report for each system inspection.
2. Defects requiring correction include the following:
a. Alignment: Less than full diameter of inside of pipe is visible between structures.
b. The maximum allowable deflection of flexible sewer pipe shall be $5 \%$ percent of average inside diameter. A rigid ball or mandrel with a diameter of at least $95 \%$ of the average inside pipe diameter shall be used for testing pipe deflection. The deflection test shall be conducted without mechanical pulling devices
c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
d. Infiltration: Water leakage into piping.
e. Exfiltration: Water leakage from or around piping.
3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
4. Re-inspect and repeat procedure until results are satisfactory.
B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
5. Do not enclose, cover, or put into service before inspection and approval.
6. Test completed piping systems according to requirements of authorities having jurisdiction.
7. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
8. Submit separate report for each test.
9. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
a. Fill sewer piping with water. Test with pressure of at least 10 -foot head of water, and maintain such pressure without leakage for at least 15 minutes.
b. Close openings in system and fill with water.
c. Purge air and refill with water.
d. Disconnect water supply.
e. Test and inspect joints for leaks.
10. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
a. Option: Test plastic gravity sewer piping according to ASTM F 1417.
b. Option: Test concrete gravity sewer piping according to ASTM C 924 (ASTM C 924M).
11. Manholes: Perform vacuum test according to ASTM C1244. A manhole may be backfilled prior to performing a vacuum test, but if the manhole fails the vacuum test, backfill shall be removed so repairs to the manhole can be made from the outside of the manhole prior to retesting.
a. The manhole vacuum test shall conform to the following The initial vacuum gauge test pressure shall be 10 inches Hg
b. The minimum acceptable test hold time for a 1 -inch Hg pressure drop to 9 inches Hg shall be
12. Not less than 2 minutes for manholes less than 10 feet deep in depth;
13. Not less than 2.5 minutes for manholes 10 to 15 feet deep; and
14. Not less than 3 minutes for manholes more than 15 feet deep
c. The manhole shall be repaired and retested if the test hold times fail to achieve the acceptance limits specified in (b), above
d. Inverts and shelves shall not be installed until after successful testing is completed.
e. Immediately following completion of the leakage test, the frame and cover shall be placed on the top of the manhole or some other means used to prevent accidental entry by unauthorized persons, children, or animals, until the contractor is ready to make final adjustment to grade
15. Force Main and Pressure Sewer Testing: Force mains and pressure sewers shall be tested in accordance with section 5 of the AWWA C600, "Installation of Cast Iron Water Mains and Their Appurtenances" standard in effect when the test is conducted, available as noted in Appendix D, at a pressure equal to the greater of 150 percent of the design operating total dynamic head or at least 100 psi.
C. Leaks and loss in test pressure constitute defects that must be repaired.
D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.

### 3.10 CLEANING

A. Clean dirt and superfluous material from interior of piping. Flush with potable water.

END OF SECTION 221313

## SECTION 221343 <br> FACILITY SEWAGE PUMPING STATION

## PART 1 - GENERAL

### 1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

### 1.2 SUMMARY

A. The contractor shall furnish and install all components of the sewage pumping station such as pumps, tanks, pipes, fittings and controls as shown on the project plans.

### 1.3 PERFORMANCE REQUIREMENTS

A. Pressure Rating of Sewage Pumps and Discharge Piping Components: At least equal to sewage pump discharge pressure, but not less than 125 psig ( 860 kPa ).
B. Pressure Rating of Other Piping Components: At least equal to system operating pressure.
1.4 ACTION SUBMITTALS
A. Product Data: Include rated capacities, operating characteristics, furnished specialties, and accessories.
B. Shop Drawings: Show fabrication and installation details for each packaged sewage pumping station. Detail equipment assemblies and indicate dimensions; shipping, installed, and operating weights; loads; required clearances; method of field assembly; components; electrical characteristics; and location and size of each field connection.

1. Wiring Diagrams: Power, signal, and control wiring.
1.5 INFORMATIONAL SUBMITTALS
A. Product Certificates: For each type of sewage pump, signed by product manufacturer.

### 1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For equipment to include in emergency, operation, and maintenance manuals.

### 1.7 QUALITY ASSURANCE

A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
B. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7.
C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
D. Comply with UL 778, "Motor-Operated Water Pumps," for sewage pumps.
E. Comply with "Standards of Design and Construction For Sewerage and Wastewater Treatment Facilities", latest edition, as published by the NHDES - Water Division.

### 1.8 PROJECT CONDITIONS

A. Interruption of Existing Sanitary Sewer Service: Do not interrupt sanitary sewer service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sanitary sewer service according to requirements indicated:

1. Notify Civil Engineer and City of Rochester Department of Public Works no fewer than 5 days in advance of proposed interruption of sanitary sewer service.

### 1.9 WARRANTY

A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of packaged sewage pumping stations that fail in materials or workmanship within specified warranty period.

1. Failures include, but are not limited to, the following:
a. Structural failures including shell.
b. Faulty operation of sewage pumps, controls, or accessories.
c. Deterioration of metals, metal finishes, and other materials beyond normal use.
2. Warranty Period for Shells: 1 year from date of Substantial Completion.
3. Warranty Period for Sewage Pumps and Controls: 1 year from date of Substantial Completion.
4. Warranty Period for Accessories: 1 year from date of Substantial Completion.

## PART 2 - PRODUCTS

### 2.1 IDENTIFICATION

A. Underground-Type Plastic Line Marker: Manufacturer's standard, permanent, bright-colored, continuous-printed plastic tape, intended for direct-burial service; not less than 4" wide x 4 mils thick. Provide green tape with black printing reading "CAUTION SEWER LINE BELOW".

### 2.2 PIPES AND FITTINGS

A. Provide pipe and fittings for sewer pipe, complete with elbows, tees, adapters, couplings, collars, accessories, and joint materials. Use pipe as called for on the plan from the following material choices.
B. P.V.C. (Poly Vinyl Chloride) Pipe.

1. All P.V.C. (Poly Vinyl Chloride) pipe and fittings shall conform to the most recent requirements of ASTM Specifications for Type PSM Poly Vinyl Chloride (P.V.C.) Sewer Pipe and Fittings, Designation D 3034 and ASTM Specifications for Sewer Pipe, Joints Using Elastomeric Seals, Designation D 3212. Manufacturer's certificate of compliance shall be furnished to the Engineer, prior to installation. Methods of shipping and storage on site shall be such as to avoid injury to the pipe. Damaged pipe shall be rejected and removed from the job.
2. Minimum "pipe stiffness" ( $F / \mathrm{y}$ ) at $71 / 2 \%$ deflection shall be 45 psi for sizes when tested in accordance with ASTM Methods of test D 2412, "External Loading properties of Plastic Pipe by Parallel Plate Loading."
3. All gravity P.V.C. pipe shall be Type SDR 35 (a measure of thickness and rigidity) and shall have elastomeric gasket joints. Solvent cement joints shall not be allowed.
C. H.D.P.E. (High-Performance High-Density Polyethylene) Pipe.
4. H.D.P.E. used for the force main shall conform to ASTM D-3035 standard.
5. All H.D.P.E pipe and fittings shall conform to the most recent requirements of ASTM Specifications. ASTM D2683 (socket fused) ASTM D3261 (butt fused).
6. H.D.P.E. pressure main that all pipe sections shall be joined by thermal heat fusion.
7. Connections or transitions to non-HDPE components shall be made with fittings approved for HDPE connections. The welding technician shall be experienced in HDPE heat fusion welding with minimum of 500 hours of welding experience.

### 2.3 STRUCTURES

A. General: Provide precast reinforced concrete structures, including pump chambers and manholes, of dimensions and capacity as indicated; ASTM A 478.
B. Reinforced concrete structures shall conform to NHDES-WSPCD and local standards.

1. Concrete structures shall be the products as manufactured by one of the following manufactures or equivalent products by another approved manufacturer.
a. Superior Concrete Co
b. A.J. Foss Co.
c. Phoenix Precast Products
2. Concrete structures shall be designed for AASHTO H-20 loading where indicated and where vehicle traffic may be present.
3. Manufacturer shall submit calculations of negative buoyancy of concrete structures to verify that uplift conditions will not occur under all installed conditions with groundwater within 6" of finished ground surface.
C. All openings for pipes in precast concrete shall be cored or formed with permanently installed metal sleeves with a center fin for water stop. Do not use tapered plugs or knockout sleeves to form openings. Pipes shall be suitably sealed into structure with rubber gaskets complying with ASTM C 443. Follow manufacturer's recommendation for size determination and installation.

### 2.4 PUMPS

A. Pumps, motors, valves, controls and ancillary equipment shall be supplied in quantities and sizes as indicated on the drawings and as required for a complete system.
B. Pumps shall be submersible wastewater pumps capable of pumping effluent at flow rates and total dynamic heads as indicated on the drawings. Pumps shall be mounted on slide rail assemblies for removal of pumps and motors from pump chamber. Pumps shall be as manufactured by one of the following manufactures or approved equal.

1. Crane-Barnes
2. Meyers - F.E. Meyers
C. Motors: Submersible motor shall be constructed with open winding and operate in clean dry dielectric oil for cooling winding and lubricating motor bearings. Motor shaft to be sealed with mechanical shaft seal, having super-lapped seal rings of carbon and ceramic. Integral motor and pump shaft shall be of stainless steel supported by two ball bearings. Motors to be 1-phase, 230 Volt and have horsepower indicated. Each pump motor shall be furnished with a minimum of twenty-five feet ( $25^{\prime}$ ) of power cord.
D. Material: Pump and motor housing shall be of cast iron construction. Impeller shall be cast iron, of the recessed type, passing a maximum 2 inch spherical solid. No suction strainers or screens of any type are to be used. All fasteners shall be of 18-8 stainless steel.

### 2.5 CONTROL PANEL

A. Pump controls shall be simplex controls contained in a non-corrosive enclosure meeting NEMA 4-X and U.L. 94 V-O requirements.
B. The motor control panel shall be assembled and tested by a shop meeting U.L. Standard 508 for industrial controls. The motor control panel shall be assembled and tested by the same manufacturer supplying the pumps so as to insure suitability and assurance of experience in matching controls to motors and to insure single source responsibility for the equipment. The control panel shall include circuit
breakers, magnetic starters, automatic pumping controls, and all internal wiring. Panels shall be remotely located at the direction of the Engineer.
C. The enclosure shall be thermal formed from an engineered thermoplastic material. The enclosure shall be steel gray in color and chemically induced. Painting of the enclosure shall not be acceptable. The enclosure shall have provisions for padlocking. A nameplate shall be permanently affixed to the panel and include model number, voltage, phase, hertz, ampere rating and horsepower rating. A warning label against electric shock shall be permanently affixed to the outer door. All fasteners shall be 300 series stainless steel or type 6063T5 aluminum, or thermoplastic. The outer door shall be attached to the enclosure using captured; quarter turn thermoplastic screws and a non-corrosive lift off hinge. The hinge shall permit the outer door to be separated from the main enclosure, when opened, by a simple upward motion. A hinge arrangement, which requires unbolting for the removal of the outer door, shall not be acceptable.
D. In the interest of safety, an inner swing door (swing dead front), constructed of clear plastic material, shall be attached to the enclosure using a piano hinge. The door shall have cutouts to allow the pullout handle(s) of the fuse disconnect(s) and components on the accessory board to protrude through in a manner so as to maintain the dead front. Disconnects shall have to be pulled before opening. No live electrical components shall be mounted on the inner swing dead front. A schematic and chart indicating a legend for wire color abbreviations as used on the schematic shall be permanently attached to the inside surface of the outer door.
E. A steel back panel with electroplated bright zinc and clear chromate finish shall be provided. A painted steel back panel shall not be acceptable. The back panel shall be mounted on stainless steel bolts using stainless steel nuts and lock washers to maintain enclosure integrity and shall be used as the means for mounting the components in the enclosure.
F. A circuit breaker shall be used to protect from line faults and to disconnect the control panel from the incoming power. Circuit breakers shall be thermal magnetic and sized to meet NEC requirements for motor controls.
G. For each pump, a red run light, running time meter, and a hand-off-auto switch shall be provided. Run lights and hand-off-auto switches shall be mounted on an electroplated bright zinc with clear chromate steel bracket. The run lights and hand-off-auto switches shall be properly labeled as to function. The hand-off-auto switches shall be rocker type with an electrical life of 50,000 operations. The run lights shall match the hand-off-auto switches in appearance and have an electrical life of 50,000 hours.
H. Control voltage shall be 120 VAC and may be accomplished by means of a transformer or available line voltage. A control fuse and on-off switch shall protect and isolate the control voltage from the line.
I. A simplex pump controller shall be provided for control logic. Pump controller shall be solid state utilizing a printed circuit board to avoid conventional wiring. The printed circuit board of the pump controller shall be made of U.L. listed materials. The pump controller shall indicate float circuit operations utilizing red amber LED indicator lights. LED indicator lights shall provide adequate information so that they can be used for diagnosis in troubleshooting problems located in float circuits. Each LED shall be permanently labeled on the pump controller as to function. Pump controller shall have provisions for connecting float level controls to box type lug connectors. Wiring of hand-of-auto switches, run lights, contactors, and overloads to the pump controller shall be accomplished by means of plug connectors
J. A high wet well alarm light with polycarbonate globe for durability shall be mounted on top of the control panel for 360-degree visibility. A solid-state flasher shall be included. An alarm bell shall be furnished and installed within the building to sound when the high water float tilts under condition. A push button silence switch shall be provided for the alarm bell.
K. An elapsed time meter shall be furnished for each pump such that it is energized when that particular pump is running. It shall be non-resettable and capable of recording up to 9999.9 hours.
L. Wetwell controls - To control the operation of the wastewater pumps with variations in liquid level in the wetwell, a minimum of three (3) sealed float type mercury switches shall be provided. The mercury tube switches shall be sealed in a solid polyurethane float for corrosion and shock resistance. The support wire shall have a heavy neoprene jacket and be multi-stranded in order to prevent fatigue. A weight shall be attached to the cord above the float to hold the switch in place in the wetwell and to prevent sharp bends in the cord when the float operates under water. The float switches shall hang in the wetwell supported only by the cord that is held to a NEMA 4 watertight junction box. A special support bracket shall be bolted to the junction box. The bracket shall have plastic cord snubber(s) to hold, and allow for adjustment of, the switches at the required height. Cords shall be spaced apart along the support bracket to prevent tangling. A minimum of twenty (20) feet of cord shall be provided with each switch to eliminate the hazards created by splicing. The sealed float type mercury switches shall be Model 3900 as manufactured by Aurora/Hydromatic Pump, A Unit of General Signal, Ashland, Ohio 44805.
M. System Operation - Normal operation of all appropriate controls and level sensors shall be as follows. The lower float serves to de-energize both pump contactors and both pumps will stop. As the liquid level rises, the next higher float energizes the lead pump contactor and starts the lead pump. The lead pump will lower the liquid level to the pump off float and the cycle will start over. The lead pump is defined by the alternator relay which indexes each time the pump off float is de-activated, i.e. the wetwell level drops below the lower float. The pumps will alternate lead position on each successive cycle of pumping. If the wetwell level continues to rise when the lead pump is operating or not, the high water alarm float shall energize the high water alarm light and bell to give early warning of the possibility of lead pump malfunction. If the wetwell level reaches and tilts the high water alarm float, the alarm light and bell shall turn on and stay on until the wetwell level drops below the level of the high water alarm float. If the wetwell level continues to rise to the next higher float, the lag pump on float energizes the lag pump contactor and starts the lag pump. Both the lead and lag pumps shall operate together until the wetwell level falls below the both pumps off float level. If the wetwell level drops below the low water alarm float, then both pumps shall not operate and the alarm light and bell shall turn on and stay on until the wetwell level rises above the level of the low water alarm float.

### 2.6 VALVES

A. Gate valves shall be bronze.
B. Ball check valve shall be PVC
C. Gate and check valves shall be as manufactured by Kennedy or approved equal.
D. Gate and check valves shall open right.
E. Gate and check valve box covers shall be stamped "sewer" and painted green.

### 2.7 FLOATS

A. All floats shall be control duty mechanical narrow angle switch.
B. Floats shall be either Normally Open (N/O) or Normally Closed (N/C) depending on the placement.

1. Normally Open (N/O) Floats shall be used for
a. Pump Off Float
b. Pump On Float
c. High Water Alarm Float.
2. Normally Closed (N/C) Floats shall be used for
a. Low Water Alarm Float.

## PART 3 - EXECUTION

### 3.1 EXAMINATION

A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance.
B. Examine roughing-in of sewerage piping systems to verify actual locations of piping connections before packaged sewage pumping station installation.
C. Proceed with installation only after unsatisfactory conditions have been corrected.

### 3.2 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Section 312000 "Earth Moving."

### 3.3 INSTALLATION

A. Install sewage pumping station components where indicated, according to specific equipment and piping arrangement indicated.
B. Grout under and around shell. Ensure that there are no voids between foundation slab and under slab of pumping station.
C. Fill voids between shell sidewalls, sleeves, and piping and make watertight seal with grout.
D. Connect anode conductors to grounding lugs on steel housing.
E. Join separate sections of housing by field welding.
F. Field weld entrance tube to housing.

### 3.4 CONNECTIONS

A. Sanitary sewer piping installation requirements are specified in Section 221313 "Facility Sanitary Sewers." Drawings indicate general arrangement of piping.
B. Install piping adjacent to machine to allow service and maintenance.

### 3.5 IDENTIFICATION

A. Install identifying labels permanently attached to equipment.
B. Install operating instruction signs permanently attached to equipment or on pumping station wall near equipment.
C. Arrange for installing warning tape or detectable warning tape over outside edges of underground packaged sewage pumping stations. Tape materials and their installation are specified in Section 312000 "Earth Moving."

### 3.6 PAINTING

A. Prepare and paint ferrous piping in wet wells, structural-steel supports, and anchor devices with coal-tar epoxy-polyamide paint according to SSPC-Paint 16.
B. Paint field-welded areas to match factory coating.

### 3.7 FIELD QUALITY CONTROL

A. Testing Agency: A qualified testing agency to perform field tests and inspections and prepare test reports.
B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
C. Perform tests and inspections and prepare test reports.

1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
D. Wet wells shall be tested prior to operation using exfiltration testing method ACI 350.1 Method HST-NML in effect at the time the wet well is installed, available as noted in Appendix D. Any visible signs of leakage shall be repaired and retested prior to placing the wet well in service.
E. Tests and Inspections:
2. After installing packaged sewage pumping stations and after electrical circuitry has been energized, test for compliance with requirements. Furnish water required for pump tests.
3. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
4. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
5. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
F. Remove and replace packaged sewage pumping stations that do not pass tests and inspections and retest as specified above.

### 3.8 STARTUP SERVICE

A. Engage a factory-authorized service representative to perform startup service.

1. Complete installation and startup checks according to manufacturer's written instructions.
2. Adjust pump, accessory, and control settings, and safety and alarm devices.

### 3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged sewage pumping stations.

END OF SECTION 221343

## APPENDIX A-4:

## ADDITIONAL REFERENCES USED IN ANALYSIS AND DESIGN

(2) There will be no expansion of the condominium or of the size or use of the individual units in the condominium.

Source. (See Revision Note at chapter heading for Env-Wq 1000) \#9086, eff 2-9-08

## Env-Wq 1008.02 System Capacity.

(a) The maximum allowable design capacity for an ISDS without a groundwater discharge permit as required under RSA 485-A:13 or RSA 485-C shall be 20,000 GPD.
(b) Systems with design capacity of 2,500 GPD or more shall have at least 2 EDA separated by at least 20 feet.
(c) The minimum size of system allowed shall be designed to accommodate a sewage flow of 300 GPD for commercial or non-commercial uses.

Source. (See Revision Note at chapter heading for Env-Wq 1000) \#9086, eff 2-9-08

Env-Wq 1008.03 Daily Flow Volume. In order to determine the appropriate size of the septic system components, such as the septic tank, pipe, and EDA, the daily flow volume of sewage in gallons per day shall be determined by one of the following methods:
(a) For new uses, by using metered water readings for similar uses, which shall be determined as follows:
(1) By finding the average of water meter readings and multiplying the average by a minimum peaking factor of 2 for commercial light flow or a maximum peaking factor of 3 for commercial heavy flow; or
(2) By measuring 6 months of consecutive daily meter readings, in which case the system shall be designed based on the highest daily flow without application of a peaking factor;
(b) For existing uses, by using the metered water readings for the use in accordance with (a)(1) or (a)(2) above; or
(c) For existing or new uses, by using the unit design flow figures as listed in Table 1008-1, below, subject to (d), below:

Table 1008-1 Unit Design Flow Figures

| USE | Design Flow |
| :--- | :--- |
| AIRPORTS | 5 GPD/Transient plus 10 GPD/Employee |
| APARTMENTS: | 225 GPD |
| 1-Bedroom or Studio | $150 \mathrm{GPD} /$ Bedroom |
| 2 or more bedrooms per Apartment | $20 \mathrm{GPD} /$ Seat |
| BARS, LOUNGES | $60 \mathrm{GPD} / \mathrm{Guest}$, based on the greater of 2 guests per <br> room or the actual number of guests the room is <br> designed to accommodate, plus $10 \mathrm{GPD} / \mathrm{Employee}$ |
| BED \& BREAKFAST | $45 \mathrm{GPD} /$ site, plus $20 \mathrm{GPD} /$ Site for the dump <br> station |
| CAMPS: | Campground with Central Comfort Station |

## NEW HAMPSHIRE CODE OF ADMINISTRATIVE RULES

| USE | Design Flow |
| :---: | :---: |
| Recreational Campgrounds with 3-way hookups | 60 GPD/Site |
| Construction Camps | $50 \mathrm{GPD} / \mathrm{Person}$ |
| Day Camps (not including meals) | 15 GPD/Person |
| Dining Facility | $3 \mathrm{GPD} /$ Person/meal |
| Residential Youth Recreation Camps | 25 GPD/Person plus 3 GPD/Person/meal |
| CATERERS - Function Rooms | $12 \mathrm{GPD} / \mathrm{patron}$ |
| CHURCHES: |  |
| Sanctuary Seating | $3 \mathrm{GPD} /$ Seat |
| Church Suppers | $12 \mathrm{GPD} /$ Seat |
| COUNTRY CLUBS - PRIVATE |  |
| Dining Room | 10 GPD/Seat |
| Snack Bar | 10 GPD/Seat |
| Locker \& Showers | 20 GPD/Locker |
| DAY CARE CENTERS | 10 GPD/Person |
| DENTISTS | $10 \mathrm{GPD} /$ Chair plus $35 \mathrm{GPD} /$ Staff Member |
| DOCTOR'S OFFICES | 250 GPD/Doctor |
| DOG KENNELS | $50 \mathrm{GPD} / \mathrm{Kennel}$, with one dog per kennel |
| DWELLINGS: |  |
| Private Residences | 300 GPD plus 150 GPD for each bedroom over 2 |
| Rooming Houses - With Meals | 60 GPD/Person |
| Rooming Houses - Without Meals | 40 GPD/Person |
| Senior Housing | See Senior Housing |
| FACTORIES (Exclusive of Industrial Waste): |  |
| Without Cafeteria or Showers | 20 GPD/Person |
| With Cafeteria, No Showers | 25 GPD/Person |
| With Cafeteria and Showers | 35 GPD/Person |
| Warehouses | 20 GPD/Person |
| FIRE STATIONS - Without full-time employees; without floor drains or food preparation | 5 GPD/Person |
| FOOD SERVICE: |  |
| Cafeteria or Eat in, plus toilet and kitchen waste | $40 \mathrm{GPD} /$ Seat plus $35 \mathrm{GPD} /$ Employee |
| Cafeteria or Eat in, paper service, plus toilet and kitchen waste | $20 \mathrm{GPD} /$ Seat plus $35 \mathrm{GPD} / \mathrm{Employee}$ |
| Ice cream dipper | 100 GPD/dipper plus 35 GPD/Employee |
| Kitchen Waste only | 3 GPD/Meal served plus 35 GPD/Employee |
| Bars and lounges | $20 \mathrm{GPD} /$ Seat plus $35 \mathrm{GPD} / \mathrm{Employee}$ |
| Function Rooms | $12 \mathrm{GPD} /$ Seat plus $35 \mathrm{GPD} / \mathrm{Employee}$ |
| GYMS | $10 \mathrm{GPD} / \mathrm{participant} \mathrm{plus} 3$ GPD per Spectator seat |
| HAIRDRESSERS | 150 GPD/Chair plus 35 GPD/Operator |
| HOSPITALS | 200 GPD/Bed plus 35 GPD/Employee |
| HOTELS AND MOTELS: |  |
| If plan shows that only one double bed can be accommodated | 100 GPD/Room plus 10 GPD/Employee |
| All other | 200 GPD/Room plus 10 GPD/Employee |
| INSTITUTIONS OTHER THAN HOSPITALS | See Residential Institutions |
| LAUNDROMATS, COIN-OPERATED | 500 GPD/Machine |

## NEW HAMPSHIRE CODE OF ADMINISTRATIVE RULES

| USE | Design Flow |
| :---: | :---: |
| MANUFACTURED HOUSING PARKS | 150 GPD/ Bedroom/Site with 300 GPD/Site minimum |
| MOTELS, see HOTELS |  |
| NURSING HOMES | 125 GPD/Bed plus 35 GPD/Employee |
| OFFICE BUILDINGS: |  |
| Without Cafeteria | 15 GPD/Employee |
| With Cafeteria | 20 GPD/ Employee |
| Unspecified Office Space | 15 GPD/100 Square Feet |
| PICNIC PARKS | See Recreational Facilities |
| RECREATIONAL FACILITIES |  |
| Toilet Waste Only | $5 \mathrm{GPD} / \mathrm{person}$ |
| With Showers and Toilets | $10 \mathrm{GPD} / \mathrm{person}$ |
| RESIDENTIAL INSTITUTIONS OTHER THAN HOSPITALS AND NURSING HOMES | 135 GPD/Bed plus 35 GPD/Employee |
| RESTAURANTS | See Food Service |
| SCHOOLS: |  |
| Boarding | 100 |
| Day, Without Gym, Cafeteria, or Showers | 10 |
| Day, Without Gyms or Showers, with Cafeteria | 15 |
| Day, With Gyms, Showers, and Cafeteria | 25 |
| SENIOR HOUSING | 125 GPD/2 Bedroom unit |
| SERVICE STATIONS | 75 GPD/Island plus 35 GPD/Employee |
| SKATING RINKS | See Gyms |
| SKI AREAS | See Recreational Facilities |
| STORES: |  |
| Dry Goods, stand-alone | $5 \mathrm{GPD} / 100$ Square feet |
| Dry Goods Stores in Shopping Centers | 100 GPD/Person |
| Supermarkets with Meat Dept. without Garbage Grinder | 7.5 GPD/100 Square feet |
| Supermarkets with Meat Dept. with Garbage Grinder | 11 GPD/100 Square feet |
| SWIMMING POOLS, Public | See Recreational Facilities |
| TENNIS COURTS | See Recreational Facilities |
| THEATERS | 3 GPD/Auditorium Seat |
| TOWN HALLS | $5 \mathrm{GPD} /$ Seat for total seating capacity |
| TOWN OFFICES | 15 GPD/Office employee plus 5 GPD /Transient |
| TRAVEL TRAILER PARKS | See Camps |
| WAREHOUSES | See Factories |

(d) For any structure with a combination of uses, such as a day camp that serves meals, a recreational facility with a cafeteria, or a ski area that also has a day care, the loading shall be the combined total of the loading for the separate uses.

Source. (See Revision Note at chapter heading for Env-Wq 1000) \#9086, eff 2-9-08; amd by \#9904-A, eff 4-16-11

Env-Wq 1008.04 Minimum Distances.

PLANS

